1. Postnatal growth restriction alters myocardial mitochondrial energetics in mice.
    Visker JR, Leszczynski EC, Wellette-Hunsucker AG, McPeek AC, Quinn MA, Kim SH, Bazil JN, Ferguson DP.Exp Physiol. 2024 Jan 5. doi: 10.1113/EP091304. Online ahead of print.PMID: 38180279
  2. The Role of Swelling in the Regulation of OPA1-Mediated Mitochondrial Function in the Heart In Vitro.
    Chapa-Dubocq XR, Rodríguez-Graciani KM, García-Báez J, Vadovsky A, Bazil JN, Javadov S.Cells. 2023 Aug 8;12(16):2017. doi: 10.3390/cells12162017.PMID: 37626827
  3. Management of Atrial Fibrillation Post Transcatheter Aortic Valve Implantation.
    Banga S, Abela GS, Saltiel F, Fischell T, Kalavakunta JK, Sood A, Jolly G, Najib K, Al-Ali H, Qintar M, Bazil J, Singh Y, Gupta V.Am J Cardiol. 2023 Aug 1;200:171-177. doi: 10.1016/j.amjcard.2023.05.024. Epub 2023 Jun 15.PMID: 37329837 Review.
  4. Calcium Overload and Mitochondrial Metabolism.
    Walkon LL, Strubbe-Rivera JO, Bazil JN.Biomolecules. 2022 Dec 17;12(12):1891. doi: 10.3390/biom12121891.PMID: 36551319 Review.
  5. Measuring Mitochondrial Function: From Organelle to Organism.
    Lewis MT, Levitsky Y, Bazil JN, Wiseman RW.Methods Mol Biol. 2022;2497:141-172. doi: 10.1007/978-1-0716-2309-1_10.PMID: 35771441
  6. Crosstalk between adenine nucleotide transporter and mitochondrial swelling: experimental and computational approaches.
    Chapa-Dubocq XR, Garcia-Baez JF, Bazil JN, Javadov S.Cell Biol Toxicol. 2023 Apr;39(2):435-450. doi: 10.1007/s10565-022-09724-2. Epub 2022 May 24.PMID: 35606662
  7. Identifying Site-Specific Superoxide and Hydrogen Peroxide Production Rates From the Mitochondrial Electron Transport System Using a Computational Strategy.
    Duong QV, Levitsky Y, Dessinger MJ, Strubbe-Rivera JO, Bazil JN.Function (Oxf). 2021 Sep 20;2(6):zqab050. doi: 10.1093/function/zqab050. eCollection 2021.PMID: 35330793
  8. Modeling the Effects of Calcium Overload on Mitochondrial Ultrastructural Remodeling.
    Strubbe-Rivera JO, Chen J, West BA, Parent KN, Wei GW, Bazil JN.Appl Sci (Basel). 2021 Mar;11(5):2071. doi: 10.3390/app11052071. Epub 2021 Feb 26.PMID: 33898062
  9. Depletion of mitochondrial inorganic polyphosphate (polyP) in mammalian cells causes metabolic shift from oxidative phosphorylation to glycolysis.
    Solesio ME, Xie L, McIntyre B, Ellenberger M, Mitaishvili E, Bhadra-Lobo S, Bettcher LF, Bazil JN, Raftery D, Jakob U, Pavlov EV.Biochem J. 2021 Apr 30;478(8):1631-1646. doi: 10.1042/BCJ20200975.PMID: 33843973
  10. The mitochondrial permeability transition phenomenon elucidated by cryo-EM reveals the genuine impact of calcium overload on mitochondrial structure and function.
    Strubbe-Rivera JO, Schrad JR, Pavlov EV, Conway JF, Parent KN, Bazil JN.Sci Rep. 2021 Jan 13;11(1):1037. doi: 10.1038/s41598-020-80398-8.PMID: 33441863
  11. Computationally modeling mammalian succinate dehydrogenase kinetics identifies the origins and primary determinants of ROS production.
    Manhas N, Duong QV, Lee P, Richardson JD, Robertson JD, Moxley MA, Bazil JN.J Biol Chem. 2020 Nov 6;295(45):15262-15279. doi: 10.1074/jbc.RA120.014483. Epub 2020 Aug 28.PMID: 32859750
  12. The very low number of calcium-induced permeability transition pores in the single mitochondrion.
    Neginskaya MA, Strubbe JO, Amodeo GF, West BA, Yakar S, Bazil JN, Pavlov EV.J Gen Physiol. 2020 Oct 5;152(10):e202012631. doi: 10.1085/jgp.202012631.PMID: 32810269
  13. Regulation of lipid metabolism in pancreatic beta cells by interferon gamma: A link to anti-viral function.
    Truong NTT, Lydic TA, Bazil JN, Suryadevara A, Olson LK.Cytokine. 2020 Sep;133:155147. doi: 10.1016/j.cyto.2020.155147. Epub 2020 May 31.PMID: 32492632
  14. Calcium overload decreases net free radical emission in cardiac mitochondria.
    Duong QV, Hoffman A, Zhong K, Dessinger MJ, Zhang Y, Bazil JN.Mitochondrion. 2020 Mar;51:126-139. doi: 10.1016/j.mito.2020.01.005. Epub 2020 Jan 23.PMID: 31982614
  15. Sea lamprey cardiac mitochondrial bioenergetics after exposure to TFM and its metabolites.
    Huerta B, Chung-Davidson YW, Bussy U, Zhang Y, Bazil JN, Li W.Aquat Toxicol. 2020 Feb;219:105380. doi: 10.1016/j.aquatox.2019.105380. Epub 2019 Dec 12.PMID: 31855722
  16. Quantification of Mitochondrial Oxidative Phosphorylation in Metabolic Disease: Application to Type 2 Diabetes.
    Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW.Int J Mol Sci. 2019 Oct 24;20(21):5271. doi: 10.3390/ijms20215271.PMID: 31652915 Review.
  17. Editorial: Genetic Modification of Cardiac Tissue.
    Camara AKS, Stowe DF, O-Uchi J, Bazil JN.Front Cardiovasc Med. 2019 Jul 16;6:93. doi: 10.3389/fcvm.2019.00093. eCollection 2019.PMID: 31380395 No abstract available.
  18. Skeletal muscle energetics are compromised only during high-intensity contractions in the Goto-Kakizaki rat model of type 2 diabetes.
    Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW.Am J Physiol Regul Integr Comp Physiol. 2019 Aug 1;317(2):R356-R368. doi: 10.1152/ajpregu.00127.2019. Epub 2019 Jun 12.PMID: 31188651
  19. Calcium phosphate precipitation inhibits mitochondrial energy metabolism.
    Malyala S, Zhang Y, Strubbe JO, Bazil JN.PLoS Comput Biol. 2019 Jan 7;15(1):e1006719. doi: 10.1371/journal.pcbi.1006719. eCollection 2019 Jan.PMID: 30615608
  20. Micro-respirometry of whole cells and isolated mitochondria.
    Levitsky Y, Pegouske DJ, Hammer SS, Frantz NL, Fisher KP, Muchnik AB, Saripalli AR, Kirschner P, Bazil JN, Busik JV, Proshlyakov DA.RSC Adv. 2019;9(57):33257-33267. doi: 10.1039/c9ra05289e. Epub 2019 Oct 17.PMID: 32123561
  21. Systems-level computational modeling demonstrates fuel selection switching in high capacity running and low capacity running rats.
    Moxley MA, Vinnakota KC, Bazil JN, Qi NR, Beard DA.PLoS Comput Biol. 2018 Feb 23;14(2):e1005982. doi: 10.1371/journal.pcbi.1005982. eCollection 2018 Feb.PMID: 29474500
  22. Human Cardiac 31P-MR Spectroscopy at 3 Tesla Cannot Detect Failing Myocardial Energy Homeostasis during Exercise.
    Bakermans AJ, Bazil JN, Nederveen AJ, Strijkers GJ, Boekholdt SM, Beard DA, Jeneson JAL.Front Physiol. 2017 Nov 27;8:939. doi: 10.3389/fphys.2017.00939. eCollection 2017.PMID: 29230178
  23. The effect of respiration buffer composition on mitochondrial metabolism and function.
    Wollenman LC, Vander Ploeg MR, Miller ML, Zhang Y, Bazil JN.PLoS One. 2017 Nov 1;12(11):e0187523. doi: 10.1371/journal.pone.0187523. eCollection 2017.PMID: 29091971
  24. Analysis of a Functional Dimer Model of Ubiquinol Cytochrome c Oxidoreductase.
    Bazil JN.Biophys J. 2017 Oct 3;113(7):1599-1612. doi: 10.1016/j.bpj.2017.08.018.PMID: 28978450
  25. Temporal and regional intestinal changes in permeability, tight junction, and cytokine gene expression following ovariectomy-induced estrogen deficiency.
    Collins FL, Rios-Arce ND, Atkinson S, Bierhalter H, Schoenherr D, Bazil JN, McCabe LR, Parameswaran N.Physiol Rep. 2017 May;5(9):e13263. doi: 10.14814/phy2.13263.PMID: 28468850
  26. The feasibility of genome-scale biological network inference using Graphics Processing Units.
    Thiagarajan R, Alavi A, Podichetty JT, Bazil JN, Beard DA.Algorithms Mol Biol. 2017 Mar 20;12:8. doi: 10.1186/s13015-017-0100-5. eCollection 2017.PMID: 28344638
  27. Feedback Regulation and Time Hierarchy of Oxidative Phosphorylation in Cardiac Mitochondria.
    Vinnakota KC, Bazil JN, Van den Bergh F, Wiseman RW, Beard DA.Biophys J. 2016 Feb 23;110(4):972-80. doi: 10.1016/j.bpj.2016.01.003.PMID: 26910434
  28. Catalytic Coupling of Oxidative Phosphorylation, ATP Demand, and Reactive Oxygen Species Generation.
    Bazil JN, Beard DA, Vinnakota KC.Biophys J. 2016 Feb 23;110(4):962-71. doi: 10.1016/j.bpj.2015.09.036.PMID: 26910433
  29. Mg(2+) differentially regulates two modes of mitochondrial Ca(2+) uptake in isolated cardiac mitochondria: implications for mitochondrial Ca(2+) sequestration.
    Blomeyer CA, Bazil JN, Stowe DF, Dash RK, Camara AK.J Bioenerg Biomembr. 2016 Jun;48(3):175-88. doi: 10.1007/s10863-016-9644-1. Epub 2016 Jan 27.PMID: 26815005
  30. Global Kinetic Analysis of Mammalian E3 Reveals pH-dependent NAD+/NADH Regulation, Physiological Kinetic Reversibility, and Catalytic Optimum.
    Moxley MA, Beard DA, Bazil JN.J Biol Chem. 2016 Feb 5;291(6):2712-30. doi: 10.1074/jbc.M115.676619. Epub 2015 Dec 7.PMID: 26644471
  31. A pH-dependent kinetic model of dihydrolipoamide dehydrogenase from multiple organisms.
    Moxley MA, Beard DA, Bazil JN.Biophys J. 2014 Dec 16;107(12):2993-3007. doi: 10.1016/j.bpj.2014.09.025.PMID: 25517164
  32. Determining the origins of superoxide and hydrogen peroxide in the mammalian NADH:ubiquinone oxidoreductase.
    Bazil JN, Pannala VR, Dash RK, Beard DA.Free Radic Biol Med. 2014 Dec;77:121-9. doi: 10.1016/j.freeradbiomed.2014.08.023. Epub 2014 Sep 16.PMID: 25236739
  33. The inferred cardiogenic gene regulatory network in the mammalian heart.
    Bazil JN, Stamm KD, Li X, Thiagarajan R, Nelson TJ, Tomita-Mitchell A, Beard DA.PLoS One. 2014 Jun 27;9(6):e100842. doi: 10.1371/journal.pone.0100842. eCollection 2014.PMID: 24971943
  34. A mechanistic mathematical model for the catalytic action of glutathione peroxidase.
    Pannala VR, Bazil JN, Camara AK, Dash RK.Free Radic Res. 2014 Apr;48(4):487-502. doi: 10.3109/10715762.2014.886775. Epub 2014 Feb 24.PMID: 24456207
  35. A biophysically based mathematical model for the catalytic mechanism of glutathione reductase.
    Pannala VR, Bazil JN, Camara AKS, Dash RK.Free Radic Biol Med. 2013 Dec;65:1385-1397. doi: 10.1016/j.freeradbiomed.2013.10.001. Epub 2013 Oct 9.PMID: 24120751
  36. Analysis of the kinetics and bistability of ubiquinol:cytochrome c oxidoreductase.
    Bazil JN, Vinnakota KC, Wu F, Beard DA.Biophys J. 2013 Jul 16;105(2):343-55. doi: 10.1016/j.bpj.2013.05.033.PMID: 23870256
  37. Dynamic buffering of mitochondrial Ca2+ during Ca2+ uptake and Na+-induced Ca2+ release.
    Blomeyer CA, Bazil JN, Stowe DF, Pradhan RK, Dash RK, Camara AK.J Bioenerg Biomembr. 2013 Jun;45(3):189-202. doi: 10.1007/s10863-012-9483-7. Epub 2012 Dec 7.PMID: 23225099
  38. Modeling the calcium sequestration system in isolated guinea pig cardiac mitochondria.
    Bazil JN, Blomeyer CA, Pradhan RK, Camara AK, Dash RK.J Bioenerg Biomembr. 2013 Jun;45(3):177-88. doi: 10.1007/s10863-012-9488-2. Epub 2012 Nov 22.PMID: 23180139
  39. A biophysical model of the mitochondrial ATP-Mg/P(i) carrier.
    Tewari SG, Dash RK, Beard DA, Bazil JN.Biophys J. 2012 Oct 3;103(7):1616-25. doi: 10.1016/j.bpj.2012.08.050. Epub 2012 Oct 2.PMID: 23062354
  40. A parallel algorithm for reverse engineering of biological networks.
    Bazil JN, Qi F, Beard DA.Integr Biol (Camb). 2011 Dec;3(12):1215-23. doi: 10.1039/c1ib00117e. Epub 2011 Nov 14.PMID: 22080176
  41. A global parallel model based design of experiments method to minimize model output uncertainty.
    Bazil JN, Buzzard GT, Rundell AE.Bull Math Biol. 2012 Mar;74(3):688-716. doi: 10.1007/s11538-011-9686-9. Epub 2011 Oct 12.PMID: 21989566
  42. A minimal model for the mitochondrial rapid mode of Ca²+ uptake mechanism.
    Bazil JN, Dash RK.PLoS One. 2011;6(6):e21324. doi: 10.1371/journal.pone.0021324. Epub 2011 Jun 23.PMID: 21731705
  43. A bioenergetic model of the mitochondrial population undergoing permeability transition.
    Bazil JN, Buzzard GT, Rundell AE.J Theor Biol. 2010 Aug 21;265(4):672-90. doi: 10.1016/j.jtbi.2010.06.001. Epub 2010 Jun 9.PMID: 20538008
  44. Modeling mitochondrial bioenergetics with integrated volume dynamics.
    Bazil JN, Buzzard GT, Rundell AE.PLoS Comput Biol. 2010 Jan;6(1):e1000632. doi: 10.1371/journal.pcbi.1000632. Epub 2010 Jan 1.PMID: 20052270